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Abstract: The inevitable destructive effects of moisture and temperature are obvious in cellulosic and
nanocellulosic substrates. These materials are the main foundations of interdependent industries
that produce products such as currency notes or high-quality packaging for sanitary, cosmetics, or
ammunition in the defense industry. Therefore, it is essential to develop procedures to eliminate
problems arising from humidity and fire to improve the quality of these green and sustainable
materials. The production of waterproof and flame-resistant cellulose-based substrates has drawn
increasing attention to resolve these drawbacks. In this review paper, we have initially summarized
the most accessible cellulosic substrates, different kinds of nanocellulose, and the general information
about water repellents and intumescent fireproof surfaces. Then, the potential and necessity of
using cellulosic biobased substrates are addressed for use in modified shapes as waterproof and fire
inhibitor coatings. Cost-effective, eco-friendly, and durable, dual-function coatings are also introduced
as future challenges, which are exploited as water-repellents and flame-retardant cellulose-based
surfaces for pulp and paper applications.

Keywords: cellulosic-based substances; nanocellulose; coating; water repellency; flame retardancy

1. Introduction

Lignocellulosic biomass is often investigated as a biodegradable and renewable sub-
stitute for petroleum products because environmental problems such as pollution, global
warming, and fuel resource tensions have arisen from the development of various indus-
tries [1,2].

Cellulose is the most plentiful polysaccharide and the basic substance in the cell walls
of plants. It is derived from lignocellulosic biomass and is the main origin of organic com-
pounds in nature [3]. This linear homopolymer which is composed of β-D glucopyranose
(1–4 linkage) units with three free hydroxyl groups (C2, C3, C6), has great potential to be
applied in various industries [4,5]. These -OH groups, as active agents and appropriate
sites for chemical modifications, can be substituted with other groups such as amines,
carboxyls, aldehydes, and phosphorus, to give cellulose outstanding properties. Many
studies have elaborated on different cellulose sources and their various properties. There
is a lengthy history of its use in both native and modified forms to achieve desired and
particular properties [1,4–13]. For example, starch, chitosan, and particularly cellulose as
bio-based materials are often used in flame-retardant products [3]. The density of cellulose
and the elasticity of its crystalline sites can be reached up to 1.6 g cm−3 and 100–200 GPa,
respectively. Furthermore, cellulose can be used to create arranged configurations through
self-assembly, originating from its semi-crystalline nature [13]. Various forms of cellu-
lose such as cellulose derivatives, regenerated cellulose, microcrystalline cellulose (MCC),
cellulose nanocrystals (CNC), cellulose nanofibrils (CNF), and other modified forms of
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cellulose have been investigated by researchers both in academic laboratories and industrial
settings [14,15].

The purpose of this review study is to summarize the widely used nanoscale materials
totally derived from cellulose bio-polysaccharides, with an emphasis on their use as raw
materials in the wood and paper industry. Moreover, as the waterproof and fireproof con-
cepts of modified cellulosic and nanocellulosic substrates have only recently been noticed
by researchers in the wood and paper industry, the necessity of using the abovementioned
surfaces is investigated as coatings. Finally, the future challenge in this field, obtaining
binary coatings on cellulosic substances, is mentioned.

2. Water Resistance and Fire Resistance Implications

Before addressing the main issue, it is necessary to comprehensively address water
resistance and fire resistance concepts.

Following surface chemistry development, hydrophobic and superhydrophobic sur-
faces have presented potential applications such as anti-cohesion, self-cleaning, liquid
separation, and printing and re-printing, which are fascinating from both academic and
industrial viewpoints [16–19]. Before considering the abovementioned surfaces in detail,
the wetting behavior is explained by three different modules as follows [20–23]:

Young’s equation : cos θ =
γsv − γsl

γlv
(1)

Wenzel’s equation : r(γsv − γsl)= γlv cos θ∗w (2)

Cassie and Baxter’s equation: cos θ = f 1 cos θ1+ f 2 cos θ2 (3)

where γSv, γSl, and γlv are the surface tension between solid-vapor, solid–liquid and liquid–
vapor phases, respectively; θ and θ*

w are the contact angles exposed to a smooth and rough
surface, respectively; r is defined as the roughness factor; f 1, f 2, θ1, and θ2 are, respectively,
the surface area fraction and contact angle for substrates 1 and 2, which are valid for a
non-homogeneous surface.

The water contact angle (WCA), which is measured for liquid droplets, is the key to
distinguishing hydrophobic surfaces from superhydrophobic ones. The sliding angle (SA),
as another important parameter, is mostly used in conjunction with WCA for waterproof
surfaces. More precisely, the higher WCA, the lower SA, and consequently, the better the
water repellency. Sustainable and bio-inspired materials can be applied as hydrophobic
and superhydrophobic agents, which provide sufficient durability versus liquid droplets.
As shown in Figure 1, a hydrophobic surface presents a water contact angle of more than
90◦, whereas a WCA of more than 150◦ represents a superhydrophobic surface [16–19].
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The fully bio-inspired waterproof surfaces, which originate from biopolymers such
as cellulose, starch, and proteins, have been demonstrated remarkable merits in terms
of environmental concerns, biodegradability, sustainability, and reusability particularly
than traditional synthetic polymers such as polylactic acid (PLA), polybutylene succinate
(PBS), and polyethylene furanoate (PEF) for paper and packaging objectives. However,
native forms of cellulosic derivatives, owing to their high water absorbability, require
modification through coating or an impregnation process, surface treatments, plasticizing,
etc. for water-resistant applications [2,4–9,11,12,17–19].

Moreover, as observed in Figure 2, the determinant role of flame retardants is defined
via the improvement of the self-stability of the polymer combustion cycle, which prevents
ignition propagation either physically (cooling down, fuel dilution, protective layer forma-
tion) or chemically (gas phase, condensed phase). The flame extinguishing and ignition
reduction are accomplished by the following procedures:

• Modifying the pyrolysis process, decreasing flammable volatiles, or increasing the
formation of low-flammability gases, which act as a barrier layer between the polymer
and sublayers.

• Isolating the flame and heat from oxygen in the air.
• Applying flame retardants or dilution agents.
• Declining the heat regression to the polymer, which hinders re-ignition by forming a

protective barrier such as a char layer or intumescent coating when the polymers are
subjected to heat sources.
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Flame retardants are divided into two subcategories based on their operation mecha-
nism, as follows:

Reactive: ignition inhibitors that are used during polymer synthesis (as monomers) or
post-reaction processes.

Additives: combustion retardants, which are commonly applied during the polymer
deformation process [3,23–27].

There are four common tests for evaluating combustion inhibitors:

n Limiting oxygen index (LOI)

The minimum content of oxygen in the air is measured by LOI. An LOI of less than
21% represents spontaneous ignition without further heating. The greater the limiting
oxygen index, the better the flame-retardant properties.

n Vertical flammability (UL 94)

UL94 is a conventional method for fire propagation rate evaluation. The output data
include the ignition duration, as well as flame spreading. Rates amongst V-0 to V-2 indicate
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combustion propagation. V-0 indicates that polymers are easily ignited and extinguished.
V-1 and V-2 correspond to more time for flame spreading. No rate indicates no ignition.

n Cone calorimeter

Since the combustion process consumes oxygen, the oxygen concentration is recorded
continuously during the test. The peak heat release rate is considered to be the major
parameter for the assessment of fire hazards.

n Pyrolysis-combustion flow calorimeter (PCFC)

Data derived from this test include the total heat release, intensity, and temperature
obtained from the peak heat release rate [3,10,24,26–30].

Some apparatuses that are commonly used for flame retardancy tests are shown
graphically in Figure 3.
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Recently, biobased fire inhibitors have grown exponentially due to the environmental
limitations derived from plastic waste management. Even though engineering plastics such
as polylactic acid (PLA), polybutylene terephthalate (PBT), poly trimethylene terephthalate
(PTT), and polyethylene terephthalate (PET) have been commonly known as intrinsic fire
retardant substances due to their self-extinguishing behavior, and appropriate dimensional
and mechanical stability [3,23–27]. In this regard, four known biobased classifications,
including carbohydrates, phenolic compounds, proteins, and lipids, have been introduced,
which can be used in the naive or derivative form via biological or chemical modifications.
Furthermore, functional groups for chemical modifications, suitable thermal stability, inher-
ent fire resistance elements such as nitrogen, silicon, and phosphorus, polymer processing
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compatibility, and the ability to form the char barrier layer has been propounded as an
efficiency indicator of biomolecules [3,10,24,26–30].

3. Prevalent Applicable Nanocellulosic Substances in the Wood and Paper Fields

Nanoscience refers to nanoscale materials (10−9 m), which exhibit at least one di-
mension with a size in the range of 1–100 nanometers. The Technical Association of Pulp
and Paper Industries (TAPPI WI 3021) has proposed standard terms for nanocellulosic
substances that are totally derived from nanocellulose. Nanocellulosic materials have been
derived from lignocellulosic biomass and are classified into three major subcategories.

• Cellulose nanofibrils, introduced as CNF or NFC (nanofibrillated cellulose).
• Cellulose nanocrystals, known as CNC or NCC (nanocrystalline cellulose).
• Bacterial cellulose, displayed as BC or BNC (bacterial nanocellulose).

The abovementioned classification is mainly derived from their preparation procedure,
function, dimensions, configuration, and cellulose origin [4,6,7,14,15].

Cellulose nanofibrils display long nanoscale structures due to interlaced and flexible
nanofibrils, which usually have widths in the range of 4–20 nm and a length between
50–2000 nm. For the production of CNFs, which consist of crystalline and amorphous subre-
gions, various mechanical and chemical techniques are applied in the presence or absence of
pretreatment or posttreatment processes to convey the desired characteristics. The advantages
of CNFs include appropriate processability, large specific surface, recyclability, biodegrad-
ability, low density, and eco-friendliness. They also have disadvantages such as high energy
consumption during production, low drainage for papermaking, and poor compatibility
with hydrophobic polymers, which arises from the hydrophilic nature of CNFs [14,15,31–34].
Due to the use of various modifications such as enzymatic pretreatment, acidic hydrolysis,
carboxymethylation, and TEMPO (2,2,6,6-tetramethylpiperidine-1-oxyl radical) oxidation, the
energy expenditures have been significantly reduced [1,4,7,8,15,31–34].

Lourenço et al. [8] considered the usage of CNFs using TEMPO oxidation and car-
boxymethylation individually as reinforcement fillers that promote the mechanical and
optical features for printing and writing paper. Cheng et al. [10] investigated the fire
retardancy of an aerogel containing CNFs and zinc borate through TEMPO oxidation. The
addition of zinc borate to the admixture reduced the heat release rate and improved the
thermal insulation. Yook et al. [7] reported that different kinds of CNFs modified using
alkyl ketene dimer (AKD) and organosilanes have great potential to be applied as barrier
coatings for packaging. A 10 g/m2 coating weight was the proper option that displayed
great strength against water, air, and grease. Arbatan et al. [35] fabricated superhydropho-
bic paper that consisted of CNF/precipitated carbonate calcium (PCC) as a filler and AKD
as a sizing agent and coated these layers on filter papers via dip-coating.

Cellulose nanocrystals produced by acidic hydrolysis exhibit lengths of 100–500 nm and
diameters of 5–50 nm. The extraction process and cellulose origin strongly affect the CNC
dimensions. Due to their higher crystallinity, CNCs are less flexible than CNFs [33,36,37].
There are problems related to using the CNCs in the papermaking industry despite their
nano-dimensions. Accordingly, surface coatings have been proposed [14,38].

It was reported that due to water permeation amongst nanocrystals, CNC films are
more prone to swelling than CNF films [14]. Some authors have proposed the use of
film composites containing starch, a natural biopolymer, incorporated within CNCs. This
composite was introduced as a promising alternative that could be utilized for eco-friendly,
biodegradable, and cost-effective packaging [39–41]. Campano et al. [42] concluded that
using CNC without pretreatment (only hydrolyzed), the process efficiency was increased
twofold without aggravating the thermal characteristics, CNC dimension, or crystallinity.
Peng et al. [43] highlighted that various drying procedures of CNCs and CNFs directly
affected the thermal behavior and crystallinity of these nanomaterials. In this regard,
a superior combination was ascribed to CNFs in terms of their thermal behavior and
crystallinity using the spray-drying method.
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Bacterial cellulose originates from the use of various kinds of bacteria through fer-
mentation, which is affected by the culture medium containing sugar. The diameter of
BC is in the range of 20–100 nm. Different types of enzymes have a decisive role as inter-
mediates during BC manufacturing. Carbon and nitrogen have been introduced as two
main feedstock in the culture medium for growing bacteria. In addition, BC is identified as
one of the sources suitable for CNC fabrication. Some of the bacteria used for BC produc-
tion include Acetobacter xylinum [44], Gluconacetobacter xylinus [45], Komagataeibacter, and
Zoogloea [37,44–46].

It has been demonstrated that bacterial nanocellulose is non-toxic, especially when
compared to CNF and CNC, which have some concerns surrounding their toxicity [47].
George et al. [44] declared that the thermal stability and mechanical properties were much
greater for CNC derived from BC (Acetobacter xylinum) compared with CNC derived from
acidic hydrolysis. Some researchers reported that BC remarkably reinforced the strength of
paper-based substrates [37,48,49].

The production stages of the cellulose chains, CNF, CNC from wood, lignocellulosic
biomass, and BC from bacterial cellulose, are illustrated in Figure 4.
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Some of the most widely used methods of nanocellulose fabrication are summarized
in Table 1.
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Table 1. Outstanding properties of commonly used procedures for nanocellulosic substance production.

Type of Method Features Advantages Disadvantages References

Grinding/Super
grinding

The fibrillation process of
fibers occurs through the

passing of cellulose slurries
between rotor and stator,

which produce shear forces
that separate the nanofibers

No need for additional
mechanical

pretreatment

Wood fibers can expunge
the grooves of the discs

Maintenance and
replacement of discs are

costly and time-consuming

[31,37,50,51]

High-pressure
homogenization

This method involves
suspension crossing via a
narrow nozzle exposed to
the high-pressure piston

Higher pressure gives a
higher yield

A homogeneous net is
received

Increasing the specific
surface area

Homogenization is blocked
by incomplete separation

of nanofibers
Irreversibility of changed

fibers

[31,37,52–55]

Microfluidization

Microfluidizer operates with
a constant shear force

opposite to the homogenizer
(constant pressure)

Suspension is pumped with
high pressure by a z-shaped

channel

Nanofibers can be
produced with a

homogeneous size
distribution

Process repetition (even up
to 10 times) is required for

better fibrillation
[15,31,37,56–59]

High-intensity
ultrasonication

Known as the conventional
mechanical lab-scale

procedure in aqueous media
in which the suspensions are
subjected to hydrodynamic

forces

The fibrillation process
depends on the

concentration of fiber,
size of the fiber, time,

and temperature

Low-scale production [31,37,60–64]

Cryocrushing

Mechanical fibrillation
occurs for frozen cellulose,
which produces fibers with

0.1-1 µm diameters

The crushing process
requires liquid nitrogen
and low temperatures

High energy consumption
Low efficiency

Expensive
[34,37,50,65,66]

Steam explosion
Suspension is rapidly

subjected to steam with
intensifying pressure

Nanofibers are
constituted by the swift

release of pressure

Non-uniformity of the
CNF quality [34,37,67–69]

4. Cellulose and Nanocellulose Substrates as Coating Layers

Sustainable and green cellulosic-based substances have become an indispensable
part of daily life due to their widespread and distinguished roles in packaging, storage,
and information transmission; however, due to the hydrophilic nature of cellulose, its
structure can be easily destroyed by moisture and temperature. Therefore, bio-based,
innovative, and green compounds have been appointed to improve the resistance against
water droplets and fire, which are placed on cellulosic surfaces via different types of coating
processes [70,71].

Paper and paperboards have been recognized as the most widely used substrates after
plastics for packaging purposes. Cosmetics, pharmaceuticals, consumable goods, domestic
appliances, and industrial and strategic commodities such as petrochemicals are relevant
to the packaging industry. Paper-based products have raised attention due to their cost-
effectiveness, accessibility, light-weight nature, proper mechanical features, and printing
easiness for printing and packaging applications. Generally, grammage is determined as
the basic factor that distinguishes paper from paperboard. According to this classification,
papers present a basic weight of 7–150 g/m2, while a basic weight of more than 150 g/m2

is attributed to paperboard [72,73]. Pigments, binders, and fillers are introduced as the
three principal components of coating layers on the surface of cellulose-based materials
to endow them with barrier properties for various applications. Biopolymers such as
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polysaccharides, proteins, and lipids can be applied as the coating layer on paper and
paperboard surfaces [58,72,73].

Different methods for the coating process are addressed as follows:
Extrusion, size-press, rod or bar, dip, and curtain coating.
Extrusion advantages include non-stop processing, the formation of a homogeneous

coating layer, less cracking, and fewer fine pores for inorganic coatings, and solvent-free
methods. Nevertheless, it suffers from large coating weight and polymer instability [73–76].

Extrusion is the only solvent-free coating procedure, and size-press, rod or bar, dip,
and curtain coating are solvent-based coating methods on cellulosic surfaces. Size press
is mostly applied for imposing liquid coatings onto solid substrates such as paper (less
than 10% solid coat layer) on industrial scales. The limited solid content may lead to an
insufficient surface coating. In contrast, a laboratory-scale rod coater can prepare coating
layers with a uniform thickness. Dip coating, as a facile and rapid coating method, requires
the precise control of the coat layer thickness and is used for liquid coating slurries on
cellulosic underlayers. Recently, curtain coating has gained more attention in the industry
due to the formation of a homogeneous coating layer that covers the surface entirely and
provides a barrier against water vapor and gas [73–77].

Nanocellulose films have attractive properties such as biodegradability, renewability,
high mechanical strength, and bio-based sources and have been applied as promising
alternatives to fossil-based and synthetic polymers for cellulosic surface coatings [73,78].
Nanoscale materials can be used as barrier film reinforcements and as a component of
paper-based coating formulas. Some authors have declared that nanocellulose coatings can
provide a barrier that is resistant to water droplets, different gases such as carbon dioxide
and oxygen, volatile components, and grease for food packaging [74–81].

5. The Necessity of Using Waterproof Surfaces for Cellulose-Based Substances

Cellulose-based substrates retain the hydrophilic nature of cellulose, exhibit a high
permeability to gases, moisture, and grease than plastics. Therefore, to overcome these
shortcomings, coatings or impregnation procedures have been used. Moreover, despite
the high energy consumption and production costs, incorporation of nanocellulose deriva-
tives to polymer matrix due to high resistance properties and transparency could be
compensated the poor barrier effect of cellulose against moisture. Films containing nanofib-
rilated cellulose due to the fiber matrix stiffness exhibit more minor water uptake and
prominent barrier features than cellulose microfibrillated films. In addition, CNC films,
because of their more crystalline nature than CNF, form a great barrier layer against liquid
droplets [6,7,14,15,31–37,67].

Low surface energy and surface roughness are two key factors to obtain a water-
repellent surface [19,70,82,83]. Hydrophobicity is achieved by modifying the surface chem-
istry and wettability transition (liquid–solid interaction) on a cellulosic surface. In addition,
water repellency can be obtained via surface modification by micro- and nanoparticles.
Generally, a hydrophobic surface demonstrates low surface energy. Fluoro compounds are
often applied for surface energy reduction, but their utilization is limited because they are
not eco-friendly.

Adhesion and liquid penetration are decreased on waterproof surfaces, which leads to
easy sliding of liquid droplets on solid surfaces. Self-cleaning capability is known as the
most important function of water-repellent surfaces. Thus, liquid-dust adhesion is greater
than liquid-solid surface adhesion, and most dust particles are eliminated by liquid droplets.
The anti-fouling properties of water-resistant substrates are derived from their resistance to
water and microorganism growth. Waterproof surfaces, due to their anti-adhesion and self-
cleaning features, have great potential to be utilized for the preservation of ancient books
and documents, as a coating layer in high-quality packaging, and pharmaceutical devices
that are prone to infection, bacteria, and contaminated surfaces. Water-resistant papers have
been investigated for security applications, especially currency notes, which are exposed to
dust, microorganisms, and hand sweat, to increase the durability of banknotes against wa-
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ter and moisture [16–19,82,83]. Latthe et al. [84] investigated the use of hydrophobic silica
nanoparticles via spray coating for various surfaces such as wood, building walls, fabrics,
and banknotes. They obtained a WCA of 160◦ and a SA of 10◦. The self-cleaning potential
of the superhydrophobic surface was considerable. Ogihara et al. [85] prepared trans-
parent and superhydrophobic paper through facile spray coating of nano-silica particles
tailored with different kinds of alcohols. They obtained silica nano-components containing
ethanol, in which the short hydrocarbon chain of ethanol demonstrated prominent water
repellency. In another study, the same authors [18] demonstrated that paper coated with
modified silica nanoparticles/alumina trihydrate/titanium dioxide followed by silane
coupling agents exhibited significant waterproofing effects. Accordingly, papers deposited
with modified nano-silica particles have great potential applications as water-repellent
banknotes. Gao et al. [86] evaluated the waterproof properties of composite using two dif-
ferent silica nanoparticles with different diameters (7 and 14 nm), which were dispersed in
polydimethylsiloxane. They observed a linear relationship between the concentration and
water contact angle. Wang et al. [16] coated a cellulosic surface with nano-silica particles
via a sol-gel process, followed by impregnation in hexadecyltrimethoxysilane solution to
obtain non-toxic, cost-effective, and superhydrophobic paper (WCA > 150◦).

6. The Necessity of Using Fireproof Surfaces for Cellulose-Based Substances

Paper and paper products, as the main feedstocks of lignocellulosic biomass, are prone
to ignition when near flames and produce ash as the residual material. Thereupon, the
development of fire resistance or flame retardancy is indispensable for their applications
in various industries. Flame-retardant cellulosic substrates have fascinating potential
applications in air transport, electronics, securities, and ammunition packaging in the
military industry.

Fire inhibitors have different chemical structures, operation modes, and consumption
levels. Halogenated flame retardants, which are operated through combustion prevention
in the gas phase, were used for many years. Although they were highly efficient at low
concentrations, their utilization has been limited due to smoke and toxic gas production in
the last decade. Phosphorus-containing flame retardants operate as flame inhibitors through
char layer formation, which reduces the fuel content and accumulates on the surface, where
it acts as a barrier. The formation of an intumescent layer reduces the heating in the
underlying substrate. Ammonium polyphosphate is an intumescent flame retardant. The
range of 15–30 wt% is frequently considered for phosphorus-containing flame retardants.
Nanoparticle-based flame retardants are rarely applied solely as ignition inhibitors, but
if they are well-dispersed with other materials, they can be very effective at low amounts
(1–5 wt%). An improved barrier effect is accompanied by a reduction in the peak of the
heat release rate. Nanoclays, specifically montmorillonites and carbon nanotubes (CNTs),
are recognized as the most commonly used nano-based flame retardants [3,10,24–30,87].

Recently, the polymer industry has turned to bio-inspired flame retardants derived
from natural polymers such as cellulose, lignin, starch, or alginate, to reduce environmental
impacts. The oxygen-rich structures of bio-polymers have propelled a relatively low release
rate of heat during combustion and oftentimes form char barrier layers. The formation of
a barrier layer on the cellulosic surfaces is achieved for all bio-inspired flame inhibitors,
which improves the thermal behavior of polymers.

A char layer presents dual positive effects:

i. By maintaining a constant carbon atom content, which constitutes the polymer struc-
ture, and by reducing the volatiles and heat release rate during combustion.

ii. The case of CNF is demonstrated better thermal behavior compared with char layer
acts as a protective barrier that decreases the heat transmission to the underlying
polymers and modifies the flame diffusion kinetics via self-intumescent processes.

Onset thermal decomposition of CNF and CNC is reported 350 ◦C and 200–300 ◦C,
respectively, which in the hemicellulose and lignin. CNC comprising low sulfate presents
efficacy thermal stability. In addition, the incorporation of nanoscopic fillers in composite
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promotes flame retardancy, barrier characteristic, stiffness, and durability compared with
fully polymeric materials [3,10,23–30].

Some studies have investigated the dual effects of biotechnology and nanoscience for
introducing innovative flame retardants, e.g., the prominent efficiency of nanoparticles and
phosphorus-based compounds on the thermal behavior of cellulose [3,10,29,30,69,88,89].
Ghanadpour et al. [90] found that the presence of phosphate groups in cellulose nanofibers
(phosphorylated CNFs) when using diammonium phosphate and urea as flame retardants
significantly improved the combustion inhibitor properties of CNFs.

7. Durable, Cost-Effective, and Dual-Function Hydrophobic/Fire-Inhibiting Coatings
on Cellulosic Substances

Presently, the production of hydrophobic, flame retardant and eco-friendly cellulosic
substances has become an immense challenge for various industries. For this reason, the
advent of innovative compounds to simultaneously modify and strengthen against water
and fire is essential, particularly for securities, high-quality packaging, and defense applica-
tions, which are directly subjected to combustion and liquid droplets. The development of
flame retardants with tunable wettability is a fascinating theme that shows great potential
for various applications [70,91–94]. Currently, the textile industry has taken significant
steps to develop dual-function ignition inhibitors and waterproofs, but there is still a large
gap for obtaining multifunctional features in the wood and paper industry.

A biobased cellulosic aerogel with improved strength with fire retardants by control-
ling its wettability was applied in a composite of reduced graphene oxide/carboxymethyl
cellulose/borate as a cross-linking agent, have produced by Shahzadi et al. [94]. Si and
Guo [70] produced a mixture of dopamine-silica trimethylsilyl modified by stearic acid
and magnesium hydroxide and used it to develop superhydrophobic paper with improved
flame retardancy. Sohbatzadeh et al. [95] introduced multifunctional, eco-friendly, and
affordable coatings for firewood and achieved a water contact angle of more than 137.73◦

using polydimethylsiloxane and hexamethyldisiloxane. Moreover, some authors have
mentioned the mixture of ammonium polyphosphate/methylmethacrylate/phosphorus
nanoparticles/strontium doped with lanthanide and composite containing phosphonitrile
functionalized by allyl, trimethylolpropane tris, and perfluoro-decyl trichlorosilane as
multifunctional agents that can be applied as wood surface coatings [96–98].

As described above, although some studies have reported the dual effects of fire
retardant and water repellency on wood surfaces, there is a need for much more accurate
surveys of multifunctional effects using biobased polymers for high-consumption cellulosic
surfaces such as paper and paperboard.

8. Conclusions and Outlook

Cellulosic-based substances, as the most commonly applied lignocellulosic biomass
derivatives, play a fundamental and vital role in various industries. Nevertheless, cellulosic
feedstocks suffer from severe structural changes when subjected to humidity and tempera-
ture, which greatly restrict their applications. Moreover, nanocellulosic derivatives present
potentialities such as retention aids, strength, and stiffness accelerators in the processing
and paper industry, composites, medicine, and various other fields.

However, due to the structural similarity of nanocellulosic substances and cellulose
carbohydrates in terms of their wettability and thermal behavior, the modification and
induction of flame retardancy and waterproof properties are important to tackle their
shortcomings particularly for packaging, securities, and defense purposes. Thus, the advent
of green and biobased materials opens novel gateways to obtain multifunctional effects. At
present, significant advances have been made in the textile and wood industries in this field.
More studies are required to develop multifunctional, cost-effective, and environmentally
friendly procedures for paper and paperboard, as the two main applications of cellulosic
materials. In this review, we have propounded the basic concepts such as water repellent
surfaces, intumescent fire retardancy, and the potential of using cellulose and its nano-
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substrates for the medication of surfaces. Some innovative multifunctional processes have
been addressed as future challenges for the application of lignocellulosic material surfaces,
but more efforts are needed in this area.
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