

Innovative fire- and water resistant cellulose-based material

National Center for Research and Development, III edition of EEA and Norway grants; The Program 'Applied Research' in the frame of Norway Grants 2014-2021 / POLNOR 2019 (NOR POLNOR/CellMat4ever/0063/2019-00)

PARTNERZY:

Genesis

- 1. Thematic areas
 - 1. Food and natural resources,
 - 2. Energy, transport and climate,
- 2. Expected results are:
 - 1. Enhanced cooperation between the Polish and Norwegian partners;
 - 2. Technology transfer, sharing experiences and best practices (S2B),
 - 3. Development of new products and technologies,

Aim

Innovative fire- and water resistant cellulose-based material

Results

Hydrophobization of cellulose through silanized starc

Preparation of biopolymer-based coatings and films for use on cellulose substrates

Panel cellulose composite with increased fire resistance

Hydrophobization of corrugated board through silanized starch

cellmat.up.poznan.pl/en/

Expandable Graphite as Cellulosic Materials—A

Bartłomiej Mazela * D, Anyelkis Batista and Faculty of Wood Technology, Poznan University

Influence of Chemical Pre-Treatments and Ultrasonication on the Dimensions and Appearance of Cellulose Fibers

ińska 2 and Mikołaj Zieliński 1

Cellulose and Its Nano-Deri Article Fire-Resistant Surface: A Re Influence of Nanocellulose Structure on Paper Reinforcement

and Bartłomiej Mazela 2,*0

Waldemar Perdoch 1, Zhuoran Cao 1, Patryk Florczak 2, Roksana Markiewicz 2, Marcin Jarek 2, Konrad Olejnik 3

Strength and Moisture-Related Properties of Filter Paper ^{® Barba} Coated with Nanocellulose

Waste Management Volume 160, 1 April 2023, Pages 165-172

is Jones ^{2,3}

High hydrophobic silanized naner: Material characterization and its through brown rot fungu

ORIGINAL ARTICLE

Waldemar Perdoch a A Bartłomiej Mazela, Me

Sorption properties of paper treated with silane-modified starch

Jerzy Majka¹ 🗓 · Waldemar Perdoch¹ 🗓 · Łukasz Czajkowski¹ 🗓 · Bartłomiej Mazela¹ 🗓 · Wiesław Olek¹ 🗓

Received: 4 January 2023 / Accepted: 28 July 2023 / Published online: 10 August 2023

Hydrophobization of cellulose through silanized starch

Waldemar Perdoch¹, Bartłomiej Mazela², Andreas Treu³, Tomasz Nowak⁴

Poznań University of Life Sciences, Poznań

Norwegian Institute of Bioeconomy Research, Norway,

Poskładani.pl, Poland,

PARTNERZY:

Output

MTMS
Methyltrimethoxysilane CAS 1185-55-3

In the study, model papers were produced and hydrophobized in bulk and on the surface through polysaccharides modified with methyltrimetoxysilane (MTMS).

Effect of starch modification – cryo-SEM-EDX

Nowak, T., Mazela, B., Olejnik, K., Peplińska, B., & Perdoch, W. (2022). Starch-silane structure and its influence on the hydrophobic properties of paper. Molecules, 27(10), 3136.

Surface treatment

Water contact angle

PDA - penetration Dynamic Analysis

Bulk treatment

Water contact angle

Water uptake

DVS

Bulk treatment

Tensile index

Waste Management

Volume 160, 1 April 2023, Pages 165-172

High hydrophobic silanized paper: Material characterization and its biodegradation through brown rot fungus

<u>Waldemar Perdoch</u> ^a ∠ ⊠, <u>Bartłomiej Mazela</u> ^a, <u>Mehrnoosh Tavakoli</u> ^{a b}, <u>Andreas Treu</u> ^c

Show more 🗸

+ Add to Mendeley 🗠 Share 🗦 Cite

https://doi.org/10.1016/j.wasman.2023.02.007 7

Get rights and content 7

Conclusions

- 1. Paper material based on cellulose modified with starch silylated through MTMS was highly hydrophobic
- 2. PDA and WCA analysis confirmed the high barrier properties of the examined material against water.
- 3. Biodegradation of the material is available after leaching
- 4. Dynamic vapor sorption of the treated papers was not altered, however, the equilibration time was prolonged.
- 5. Cellulose with MTMS-modified starch highlighted their high potential as a hydrophobic agent in the paper and packaging industry.

CELLMAT4EVER

www.Cellmat.up.poznan.pl

Acknowledgements.

The study was financed within the framework of National Center for Research and Development, III edition of EEA and Norway grants; The Program 'Applied Research' in the frame of Norway Grants 2014-2021 / POLNOR 2019 (NOR POLNOR/CellMat4ever/0063/2019-00)

PARTNERS:

